Mark scheme – Equilibrium

Question		on	Answer/Indicative content	Marks	Guidance
				4	FULL ANNOTATIONS MUST BE USED ALLOW suitable alternatives for right-hand side, e.g.: towards NH ₃ /products OR forward direction OR increases yield
1		i	Pressure:		For moles, ALLOW molecules/particles ALLOW reverse reaction is endothermic /ΔH is positive/takes in heat ORA for reverse reaction
1		i	Right-hand side has fewer (gaseous) moles OR 4 (gaseous) moles form 2 (gaseous) moles √ High pressure √ Temperature: (Forward) reaction is exothermic/ΔH is negative OR (Forward) reaction gives out heat √ Low temperature √	(A01.2) (A02.1) (A01.2) (A02.1)	Examiner's Comments This question was answered well with many candidates being given all 4 marks. Most candidates identified that there are fewer gaseous moles of products and that an increase the pressure will shift the equilibrium position to the right. Although the exothermic nature of the forward reaction was usually identified, candidates sometimes muddled the temperature conditions required, with 'higher temperature' being seen often instead of 'low temperature'. Lower attaining candidates often seemed to confuse equilibrium (in this question) with rates.
		II	FIRST CHECK THE ANSWER ON ANSWER LINE IF answer = 2.86 × 10 ⁻² award 2 marks 	2 (AO2.6×2)	IF there is an alternative answer, check for any ECF credit possible using working below. ALLOW calculated value 0.02858291 correctly rounded to 3 or more SF for 1st marking point ALLOW ECF to 3 SF and standard form ONLY from inverted K _c expression \rightarrow 3.50 × 10 ¹ DO NOT ALLOW $\frac{[NH_3]^2}{[N_2] + [H_2]^3}$ = 0.0337 (no marks)

				IGNORE attempts at units
				<u>Examiner's Comments</u> Exemplar 5
				$K_{c} = \frac{(NH_{3})^{2}}{(H_{1}]^{3}[N_{1}]} \longrightarrow \frac{[0.962]^{2}}{[2.95]^{3}[1.25]}$ = <u>0.029</u> to <u>255</u> . $K_{c} = 2.9100^{-2} to 255^{4}}$
				This part discriminated well. Most candidates were able to write the correct expression for K_c as the starting point of the calculation. Candidates often got into a muddle in calculating K_c , perhaps due to issues inputting the calculation into their calculators. The question asked for 'an appropriate number of significant figures and in standard form'. As the provided data was all to 3 significant figures, this also indicates the required number of significant figures in the answer. A calculated value to 2 significant figures was often seen (see the response); also 0.0286 rather than the standard form: 2.86 × 10 ⁻² . Some responses showed K_c inverted or added, rather than multiplying the two reactants in the denominator. Other candidates wrote the correct equilibrium expression but were then used 2.75 ² , rather than 2.75 ³ , to obtain the standard form answer of 7.786 × 10 ⁻² or 0.0786 with no standard form. Candidates are advised to check back through calculations to see if they have made any such errors.
		Total	6	
2	а	$(K_{c} =) \frac{[NO(g)]^{4} [H_{2}O(g)]^{6}}{[NH_{3}(g)]^{4} [O_{2}(g)]^{5}} \checkmark$	1	Square brackets required IGNORE state symbols <u>Examiner's Comments</u> Generally, this question was well answered with only a small proportion of candidates adding the values together instead of multiplying.
	b	EQUILIBRIUM CONDITIONS Temperature: 1 mark (Forward) reaction is exothermic/ ΔH is negative OR (Forward) reaction gives out heat \checkmark	5	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC

Total	6	
		well-reasoned approach to the question.
		This candidate scored all five marks for this
		and doesnot promote satisfy for mondes.
		reaction table but not too high pressure as it is dangenous
		slow. A slightly higher pressure is also used to increase
		so as to inverse the rate of reaction Otherway reaction is too.
		NO and Azo) are formed. A higher temperature is used
		minimise the charge caused so maximum product (i.e.
		and more towards the areation with more
		the right, as to a garage in pressure causes the
		prossure so as to shift position of equilibrium to
		because forward volation is prothermic rate-ver low
		tous temperature to as to shift the position of equilibrium
		 State and explain how these conditions could be changed to achieve a compromise between equilibrium yield, rate and other operational factors.
		nitrogen monoxido in equilibrium 4.1,
		(c) Predict the conditions of temporature and pressure for a maximum admitibrium vield of
		Exemplar 3
		equilibrium yield.
		increased rate would lead to a decreased
		and many candidates did not appreciated that
		described less commonly than temperature
		and/or rate. The explanation for pressure was
		answers with operational factor considerations
		candidates then went on to qualify their
		descriptions of equilibrium shifts and many
		candidates. Responses were confident in their
		marking points were credited to most
		which was not required. The first three
		explaining, in depth, Le Chateller's principle,
		evolution in denth Le Chatelior's principle
uses a lot of energy √		Many candidates put a lot of effort into
(High) pressure is expensive (to generate) /		well, with the most common mark being 4/5.
OR		Most candidates answered this question very
reauce yield / snift equilibrium to left		
Higher temperatures increase energy costs /		Examiner's Comments
OR		
High pressure provides a safety risk		IGNORE catalyst
EACTORS 4 month		
		IGNOPE stated tomporatures and pressures
		,
frequency of collisions \checkmark		because yield reduced
higher pressure needed to increase rate OR		ALLOW Temperature / pressure not too high
rate/slower reaction so high temperatures /		
Low temperature/pressure gives a slow		
RATE: 1 mark		trequency of collisions
DATE: 4 month		frequency of colliging
		Answer MUST relate temp/pressure to rate /
Low temperature AND low pressure \checkmark		
(for maximum yield of NO)		
mark		
OPTIMUM EQUILIBRIUM CONDITIONS: 1		
moles v		
UK 9 (gaseous) moles form 10 (gaseous)		ALLOW reverse arguments
Leit-nand side has tewer (gaseous) moles		
Left hand aide has favor (record) wells		
Brocourou 1 mork		

3.2.3 Chemical Equilibrium

3	i	Expression: $K_c = [NH_3]^2 / [H_2]^3[N_2] (1)$ Calculation: $= (0.877)^2 / (2.00)^3 (1.20) (1)$ $= 0.0801 \checkmark (dm^6 mol^{-2})$	3	square brackets required allow from 1 sig fig up to calculator display correct answer alone scores all marks
	ii	Catalyst: No effect, it only changes the rate of reaction (1) <i>Higher temperature:</i> Forward reaction is exothermic (1) so position of equilibrium moves to the left and there will be less NH ₃ (1)	3	
		Total	6	
4		FIRST, CHECK THE ANSWER ON ANSWER LINE IF answer = 14.6 (dm ² mol ⁻⁶) award 2 marks K_c expression $(K_c =) \frac{[CH_3OH]}{[CO] [H_2]^2} OR \frac{0.26}{0.31 \square 0.24^2}$ OR 14.56 \checkmark Answer to 3 SF 14.6 (dm ⁶ mol ⁻²) \checkmark	2	FULL ANNOTATIONS MUST BE USED IF there is an alternative answer, check to see if there is any ECF credit possible using working below. ALLOW calculated value 14.5609319 correctly rounded to 3 or more SF for 1st marking point ALLOW ECF to 3 SF ONLY from inverted K _c expression → 0.0687 DO NOT ALLOW $\frac{[CH_3OH]}{[CO] + [H_2]^2} = 0.707$ (no marks) Examiner's Comments Most candidates were able to obtain a value of 14.56 using a correct K _c expression, but a significant number of candidates were unable to give their answer to an appropriate number of significant figures. Candidates should use the least accurate data provided, here three significant figures, and to indicate the appropriate number of significant figures in the final answer. Other common errors included the inverted K _c expressions and use of [CO] + [2H_2], rather than [CO] [H_2] ² , as the denominator. Answer = 14.6 dm ⁶ mol ⁻²
		Total	2	

			ANNOTATE ANSWER WITH TICKS AND CROSSES
			IGNORE amount of acid increases (<i>in</i> question) ALLOW (added) acid reacts with $CrO_4^{2^-}$
			Note: ALLOW suitable alternatives for 'to right', e.g.: towards products OR towards $Cr_2O_7^{2^-}$ / H_2O OR in forward direction OR favours the right
			ALLOW $H^+ + OH^- \rightarrow H_2O$ ALLOW alkali reacts with (added) acid
			e.g.: towards reactants OR towards $CrO_4^{2^-} / H^+$ OR in reverse direction OR favours the left
5 a	Addition of acid [H⁺] OR H⁺ increases AND equilibrium (position) shifts to right √	2	IGNORE just H ⁺ concentration decreases (needs role of alkali) IGNORE concentration of water increases (needs role of alkali)
	Addition of alkali		Examiner's Comments
	Alkali reacts with H ⁺ OR alkali removes H ⁺ AND equilibrium (position) shifts to left √		This question discriminated well and the strongest candidates provided succinct responses with the correct level of scientific content. The first mark was awarded for recognition that adding an acid would increase the concentration of H ⁺ ions, causing the equilibrium to shift to the right. Most candidates realised this was the case. However, it was not uncommon to see vague responses that simply re-stated the information in the question, rather than focussing on the effect it would have on the species in the equilibrium equation. The second mark proved more difficult. The strongest candidates identified that the added alkali would remove H ⁺ ions from the equilibrium mixture, and some supported this statement with an equation. Many however, simply stated that the equilibrium would shift left to reduce the concentration of the alkali without attempting to relate it to the equation provided. Candidates are advised to consider

				question as they will help form the basis from which to build a response.
b	i	Equilibrium (position) shifts to right AND turns paler (brown) √	2	ALLOW turns colourless IGNORE initially goes darker (brown) Note: ALLOW suitable alternatives for 'to right', e.g.: towards products OR towards N ₂ O ₄ OR in forward direction OR favours the right IGNORE responses in terms of rate
		Right-hand side has fewer (gaseous) moles / molecules OR left-hand side has more (gaseous) moles / molecules √		Examiner's Comments The effect of pressure on the position of an equilibrium is well known by candidates. Most were able to apply le Chatelier's principle accurately stating the equilibrium shifted to the right as that was the side with fewest moles of gas. However a significant proportion of the cohort did not comment on the effect on the appearance of the equilibrium mixture.
	II	Equilibrium (position) shifts to left AND turns darker / deeper (brown) √ (Forward) reaction is exothermic OR (forward) reaction gives out heat OR reverse reaction is endothermic OR reverse reaction takes in heat √	2	 ALLOW turns brown Note: ALLOW suitable alternatives for 'to left', e.g.: towards reactants OR towards NO2 OR in reverse direction OR favours the left IGNORE comments about the 'exothermic side' or 'endothermic side' ALLOW 'equilibrium (position) shifts left AND in the endothermic direction' for second marking point IGNORE responses in terms of rate Examiner's Comments As with part (a)(i), candidates demonstrated an excellent grasp of le Chatelier's principle but it was only the most able candidates who referred to the appearance of the equilibrium mixture. Candidates should be encouraged to read questions carefully to ensure they include all the required information in their responses.
		Total	6	

				FULL ANNOTATIONS MUST BE USED
				ALLOW suitable alternatives for 'towards right', e.g.: towards SO ₃ /products OR in forward direction OR 'favours the right'
6	а	EQUILIBRIUM CONDITIONS 3 MAX 4 marking points \rightarrow 3 max $\checkmark \checkmark$ Mark first three CORRECT responses seenTemperature: (Forward) reaction is exothermic/ ΔH is negative OR (Forward) reaction gives out heat \checkmark Pressure: Right-hand side has fewer (gaseous) moles OR 3 (gaseous) moles form 2 (gaseous) moles OR 3 (gaseous) moles form 2 (gaseous) moles \checkmark Equilibrium shift Correct equilibrium shift in terms of 	5	ALLOW reverse reaction is endothermic /Δ H is positive/takes in heat For moles, ALLOW molecules/particles ORA for reverse reaction IGNORE responses in terms of activation energy ALLOW high pressure is dangerous/explosive ALLOW 'These conditions are expensive' Statement subsumes pressure as 'these' will apply to pressure (required for this mark) and temperature ALLOW ORA e.g. Lower pressure → less danger/uses less energy IGNORE 'It's expensive Link with pressure required Examiner's Comments This longer answer was answered very well with the majority of candidates able to score 4 or 5 marks. Most candidates explained how the position of equilibrium shifts in response to low temperature and high pressure. The commonest omission was the link between
	b	<i>Value of K_c 1 mark</i> K _c is small OR K _c < 1 AND equilibrium (position) is towards left √	4	FULL ANNOTATIONS MUST BE USED
		Calculation: FIRST CHECK ANSWER IF [SO ₃] = 0.876 OR 0.88 (mol dm ⁻³) award all 3 marks available for calculation		

			$K_{c} expression 1 mark \frac{[SO_{3}]^{2}}{[SO_{2}]^{2}[O_{2}]} OR \frac{[SO_{3}]^{2}}{2.00^{2} \times 1.20} \checkmark$ Evaluation of $K_{c} [SO_{2}]^{2}[O_{2}] 1 mark Kc[SO_{2}]^{2}[O_{2}] = 0.160 \times 2.00^{2} \times 1.20 = 0.768 \checkmark Calculation of [SO_{3}]ONLY available from correct evaluation for2nd mark[SO_{3}] = \sqrt{(0.160 \times 2.00^{2} \times 1.20)} = 0.876 \pmod{dm^{-3}} \checkmark$		Square brackets required in K_c expression ALLOW ECF from $\frac{[SO_3]}{[SO_2]^2[O_2]}$, i.e. no $[SO_3]^2$ ALLOW 0.77 (2 SF) ALLOW 0.88 (2 SF) up to calculator value of 0.876356092 correctly rounded IF K_c expression is inverted 2nd and 3rd marks are available by ECF: $[SO_3]^2 = \frac{2.00^2 \times 1.20}{0.160}$ OR $30 \checkmark$ $[SO_3] = \sqrt{30} = 5.48$ OR $5.5 \checkmark$ Any other K_c expression \rightarrow NO MARKS, e.g. $\frac{[SO_3]^2}{[SO_2]^2 + [O_2]} \rightarrow \sqrt{0.832} \rightarrow 0.912$ NO Marks Examiner's Comments Given that K_c is new to AS level in the reformed specification, this part was attempted well. However, writing a correct K_c did cause problems for weaker candidates, who sometimes inverted the expression, used the + sign from the equation, obtaining a denominator of $[SO_2]^2 + [O_2]$, or omitted the square from $[SO_2]^2$ and $[SO_3]^2$. Some excellent answers were seen and this part differentiated very well between candidates of different abilities.
					Answer: [SO ₃] = 0.876 mol dm ⁻³
			Total	9	
7	а		The (position of a dynamic) equilibrium shifts to minimise (the effect of) any change √	1	ALLOW suitable alternatives for 'shifts' and 'minimises' IGNORE 'reaction shifts' Examiner's Comments Most candidates were able to describe le Chatelier's principle.
	b	i	Pressure: Right-hand side has fewer (gaseous) moles / molecules OR left-hand side has more (gaseous) moles / molecules √	3	ANNOTATE ANSWER WITH TICKS AND CROSSES ETC DO NOT ALLOW fewer atoms on right-hand side OR more atoms on left-hand side.

		Total	6	Most candidates identified high pressures as either dangerous or requiring expensive equipment. The strongest responses linked low temperature with a slow rate of reaction.
	ii	Low temperature gives a slow rate OR high temperatures needed to increase rate ✓ High pressure is expensive (to generate) OR high pressure provides a safety risk ✓	2	ALLOW high pressure is dangerous IGNORE high pressure is explosive Examiner's Comments
		<pre>Temperature: Statement that: (Forward) reaction is exothermic OR (forward) reaction gives out heat OR reverse reaction is endothermic OR reverse reaction takes in heat ✓ Equilibrium Lower temperature / cooling AND increasing pressure shifts (equilibrium position) to the right ✓</pre>		IGNORE comments about the 'exothermic side' or 'endothermic side' Equilibrium mark is for stating that BOTH low temperature and high pressure shift equilibrium to the right (Could be separate statements) Note: ALLOW suitable alternatives for 'to right', e.g.: towards products OR towards CH ₃ OH / H ₂ O OR in forward direction OR favours the right IGNORE Increases yield of CH ₃ OH / products (<i>in question</i>) IGNORE responses in terms of rate Examiner's Comments A good discrimination was achieved by this question. The most able candidates gave succinct responses which related the low temperature and high pressure to the change in equilibrium position. Candidates are encouraged to write as accurately as possible in this type of question. For example, the effect of pressure is best explained by reference the relative number of moles on each side of the equation. A statement about the nature of the forward reaction, in this case exothermic, is appropriate to explain the effect of temperature.
		Temperature: Statement that:		IGNORE comments about the 'exothermic side' or 'endothermic side'

				ALLOW both reactions occur at same rate
8	i	Rate of the forward reaction is equal to the rate of the reverse reaction ✓ OR concentrations do not change√	1	IGNORE conc. of reactants = conc. of products Examiner's Comments A good proportion of candidates recognised the need to provide one of the key features of a dynamic equilibrium as outlined in the specification.
				Mark each point independently
				ALLOW more reactants OR less products
	ii	More H₂ and I₂ OR less HI ✓ (equilibrium position shifts) to the left AND (Forward) reaction is exothermic OR reverse reaction is endothermic OR in the endothermic direction√	2	Note: ALLOW suitable alternatives for to the left e.g. towards reactants OR towards H ₂ / I ₂ OR in reverse direction OR favours the left. ALLOW gives out heat for exothermic ALLOW takes in heat for endothermic IGNORE responses in terms of rate Examiner's Comments This question required candidates to apply le Chatelier's Principle to the equilibrium and in addition predict the effect it would have on the composition of the mixture. Most candidates were able to predict and explain the shift in the position of equilibrium and the most able stated the effect on the composition of the mixture. Candidates should be encouraged to read questions carefully to ensure they address all aspects in their response.
	iii	No effect AND Same number of (gaseous) moles on both sides √	1	ALLOW same number of molecules on each side Examiner's Comments This question was answered very well and most candidates picked up this mark.

3.2.3 Chemical Equilibrium

			Total	4	
9			 * Please refer to the marking instruction point 10 for guidance on how to mark this question. (Level 3) All/most points covered and clearly linked. Must have points taken across all of the headings in the indicative points for Level 3. The explanations show a well-developed line of reasoning linked to appropriate suggestions which is clear and logically structured. The compromises are relevant and well thought out and clearly linked to the explanations. (5–6 marks) (Level 2) Suggests correct conditions with explanations OR comments on compromises with reference to yield AND rate effect. The explanations are linked to appropriate suggestions and show a line of reasoning with some structure. The compromises are relevant but may not be clearly linked to the explanation. (3–4 marks) (Level 1) Comments on conditions with some explanation OR comments on compromise with reference to yield OR rate. The comments about yield / rate with explanation are basic and communicated in an unstructured way. The compromises may not be relevant with lack of reasoning. (1–2 marks) No response or no response worthy of credit. (0 marks) 	6	Indicative scientific points may include Yield • Increasing pressure increases yield of SO ₃ • Decreasing temperature increases yield of SO ₃ Explanation • (pressure) more moles / molecules on the reactant side ORA • (temp.) the forward reaction is exothermic ORA Rate • Increasing pressure increases rate • Increasing temperature increases rate Compromise • Choose a higher temperature which creates a reduced yield but in a shorter space of time ignore reference to increase pressure leading to safety / cost issues
			Total	6	
10	а	i	$\mathcal{K}_{c} = \frac{[CH_{3}OH]}{[CO][H_{2}]^{2}}$	1	
		ii	$[CH_{3}OH] = 14.6 \times (3.10 \times 10^{-3}) \times (2.40 \times 10^{-3})^{2}$ (1) $= 2.61 \times 10^{-7} \text{ (mol dm}^{-3}\text{) (1)}$	2	
	b	i	Yield decreases AND Equilibrium (position) has moved to the left	1	allow moved towards reactants OR moved towards CO and H ₂

3.2.3 Chemical Equilibrium

	ii	Oxidised Nitrogen AND −3 AND +2 (1) Reduced Oxygen AND 0 AND −2 (1)	2	
		Total	6	